Influence of thermal properties on residual stresses in SLM of aerospace alloys

Author:

Yakout Mostafa,Elbestawi M.A.,Veldhuis S.C.,Nangle-Smith S.

Abstract

Purpose Residual stresses are induced during selective laser melting (SLM) because of rapid melting, solidification and build plate removal. This paper aims to examine the thermal cycle, residual stresses and part distortions for selected aerospace materials (i.e. Ti-6Al-4V, stainless steel 316L and Invar 36) using a thermo-mechanical finite element model. The numerical results are validated and compared to experimental data. Design/methodology/approach The model predicts the residual stress and part distortion after build plate removal. The residual stress field is validated using X-ray diffraction method and the part distortion is validated using dimensional measurements. Findings The trends found in the numerical results agree with those found experimentally. Invar 36 had the lowest tensile residual stresses because of its lowest coefficient of thermal expansion. The residual stresses of stainless steel 316L were lower than those of Ti-6Al-4V because of its high thermal diffusivity. Research limitations/implications The model predicts residual stresses at the optimal SLM process parameters. However, using any other process conditions could cause void formation and/or alloying element vaporization, which would require the inclusion of melt pool physics in the model. Originality/value The paper explains the influence of the coefficient of thermal expansion and thermal diffusivity on the induced thermal stresses using experimental and numerical results. The methodology can be used to predict the part distortions and residual stresses in complex designs of any of the three materials under optimal SLM process parameters.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference47 articles.

1. Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation;Additive Manufacturing,2018

2. Effect of scan pattern on the microstructural evolution of inconel 625 during selective laser melting,2014

3. The effect of thermal properties and weld efficiency on residual stresses in welding;Journal of Achievements in Materials and Manufacturing Engineering,2007

4. Chapter 18 - Advances in laser-induced plastic deformation processes,2010

5. Materials for additive manufacturing;CIRP Annals,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3