Real-time tactile biofeedback device use for improving balance control of an adolescent with medulloblastoma

Author:

Argunsah HandeORCID,Yalcin BegumORCID

Abstract

PurposeBiofeedback is used for regulating vestibular adaptation and balance by providing real-time stimulus to the individual during physical activities. This study aimed at (1) developing a wearable device, which tracks balance, counts the number and the direction of balance losses and provides haptic biofeedback through real-time vibration stimulus (2) investigating device efficacy on an adolescent medulloblastoma patient during static and dynamic tasks.Design/methodology/approachA 16-year-old medulloblastoma patient used the device during 10-m walking and single-leg stance tests. The knee joint kinematics and the number and direction of balance losses were recorded for “with” and “without” biofeedback conditions.FindingsThe device helped regulate the knee joint kinematics and reduce the number of balance losses of the medulloblastoma patient. The knee joint movement pattern similarity of the control subject was highly correlated (R2 = 0.997, RMSE = 1.232). Conversely, medulloblastoma patient knee joint movement pattern similarity was relatively weak (R2 = 0.359, RMSE = 18.6) when “with” and “without” biofeedback conditions were compared. The number of balance losses decreased when the medulloblastoma patient was guided with biofeedback.Research limitations/implicationsThe major limitation of this pilot study is the lack of a large and homogeneous number of participants. The medulloblastoma patient used the device while walking after she was given enough time to get used to the tactile biological feedback, so the long-term effect of the device and biofeedback guidance were not investigated. Additionally, the potential desensitization with prolonged use of the device was not evaluated.Practical implicationsBiofeedback reduced the number of balance losses; additionally, the knee joint movement pattern was regulated during static and dynamic tasks. This device can be integrated into the physical therapy of patients with balance, vestibular and postural control impairments.Social implicationsThis is compact and has an easy-to-wear design, patients, who have balance and postural control impairments, can practically use the device during their activities of daily living.Originality/valueThe device promotes physical activity adaptation and regulates gait through continuous and real-time balance control. Its design makes it simple for the user to wear it beneath clothing while using the sensor.

Publisher

Emerald

Subject

Management of Technology and Innovation,Computer Science Applications,Rehabilitation,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3