The size effect on intermetallic microstructure evolution of critical solder joints for flip chip assemblies

Author:

Tian Ye,Chow Justin,Liu Xi,Sitaraman Suresh K.

Abstract

Purpose – The purpose of this paper is to study the intermetallic compound (IMC) thickness, composition and morphology in 100-μm pitch and 200-μm pitch Sn–Ag–Cu (SAC305) flip-chip assemblies after bump reflow and assembly reflow. In particular, emphasis is placed on the effect of solder joint size on the interfacial IMCs between metal pads and solder matrix. Design/methodology/approach – This work uses 100-μm pitch and 200-μm pitch silicon flip chips with nickel (Ni) pads and stand-off height of approximately 45 and 90 μm, respectively, assembled on substrates with copper (Cu) pads. The IMCs evolution in solder joints was investigated during reflow by using 100- and 200-μm pitch flip-chip assemblies. Findings – After bump reflow, the joints size controls the IMC composition and dominant IMC type as well as IMC thickness and also influences the dominant IMC morphology. After assembly reflow, the cross-reaction of the pad metallurgies promotes the dominant IMC transformation and shape coarsened on the Ni pad interface for smaller joints and promotes a great number of new dominate IMC growth on the Ni pad interface in larger joints. On the Cu pad interface, many small voids formed in the IMC in larger joints, but were not observed in smaller joints, combined with the drawing of the IMC growth process. Originality/value – With continued advances in microelectronics, it is anticipated that next-generation microelectronic assemblies will require a reduction of the flip-chip solder bump pitch to 100 μm or less from the current industrial practice of 130 to150 μm. This work shows that as the packaging size reduced with the solder joint interconnection, the solder size becomes an important factor in the intermetallic composition as well as morphology and thickness after reflow.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3