A method for the tin pest presence testing in SnCu solder alloys

Author:

Skwarek Agata,Kulawik Jan,Czerwinski Andrzej,Pluska Mariusz,Witek Krzysztof

Abstract

Purpose – The purpose of this study is to develop a testing method for tin pest in tin – copper (SnCu) alloys. Tin pest is the allotropic transformation of white β-tin (body-centered tetragonal structure) into gray α-tin (diamond cubic structure) at temperatures < 13.2°C. Design/methodology/approach – Bulk samples of Sn99Cu1 weight per cent (purity, 99.9 weight per cent) were cast in the form of roller-shaped ingots with a diameter of 1.0 cm and a height of 0.7 cm. The samples were then divided into four groups. The first group included samples artificially inoculated with α-tin powder. The second group was inoculated in the same way as the samples from the first group but additionally subjected to mechanical pressing. The third group of ingots was only subjected to mechanical pressing. The fourth group of samples consisted of as-received roller-shaped ingots.All samples were divided into two groups and kept either at −18°C or at −30°C for the low-temperature storage test. For tin pest identification, a visual inspection was made, using a Hirox digital microscope over 156 days at intervals not longer than 14 days. The plot of the transformation rate, presented as the average increase in the area of α-tin warts in time, was also determined. To demonstrate the differences between regions of β- and α-tin, scanning ion microscopy observations using the focused ion beam technique was performed. Findings – The first symptoms of tin pest were observed for the inoculated, mechanically pressed samples stored at −18°C, as well as those at −30°C, after less than 14 days. In the first stage of transformation, the rate was higher at −30°C for some time but, after about 75 days of storage at sub-zero temperatures, the rate at −30°C became lower compared to the rate at −18°C. Inoculation via the application of substances which are structurally similar to α-tin was efficient for the proposed new approach of rapid testing only when applied with simultaneous mechanical pressing. Infection from pressed-in seeds, leading to conventional seeded growth, was more rapid than infection in contact with seeds (without mechanical pressing), where the transition mechanism was induced by the epitaxial growth of metastable ice. Originality/value – The new rapid method for the diagnostic testing of the susceptibility of different SnCu alloys to tin pest in a period much shorter than 14 days (within single days for storage at −30°C) is proposed and described. The test procedure described in this paper produced results several times quicker than conventional procedures, which may take years. In effect, the behavior of tin alloys in the face of tin pest may be predicted much more easily and much earlier. The same procedure can be applied to other SnCu alloys used in electronics (and in other areas), if the test samples are prepared in a similar manner.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mössbauer studies of β → α phase transition in Sn-rich solder alloys;Microelectronics Reliability;2018-03

2. Inoculator dependent induced growth of α-Sn;Materials Chemistry and Physics;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3