Characterization of nano-enhanced interconnect materials for fine pitch assembly
Author:
Zhang Yan,Sitek Janusz,Fan Jing-yu,Ma Shiwei,Koscielski Marek,Ye Lilei,Liu Johan
Abstract
Purpose
– Multiple fillers are adopted to study the filler influences on electrical and mechanical properties of the conductive adhesives. The performances of the developed nano-enhanced interconnect materials in printing process are also evaluated. The paper aims to discuss these issues.
Design/methodology/approach
– Micron-sized silver flakes are used as the basic fillers, and submicro- and nano-sized silver spheres and carbon nanotubes (CNTs) are adopted to obtain conductive adhesives with multiple fillers. Differential scanning calorimetry measurement is carried out to characterize the curing behavior of the samples with different fillers, four-probe method is used to obtain the bulk resistivity, shear test is conducted for adhesive strength, and environmental loading test is also involved. Furthermore, printing trials with different patterns have been carried out.
Findings
– The electrical resistivity of the adhesives with submicro-sized silver spheres does not monotonically change with the increasing sphere proportion, and there exists an optimized value for the ratio of silver flakes to spheres. Samples with relatively small amount of CNT additives show improved electrical properties, while their mechanical strengths tend to decrease. For the printing application, the adhesives with 18.3 volume% filler content behave much better than those with lower filler content of 6 percent. The presence of the nano-particles makes a slight improvement in the printing results.
Research limitations/implications
– More detailed printing performance and reliability test of the samples need to be carried out in the future.
Originality/value
– The conductive adhesives as interconnect materials exhibit some improved properties with optimized bimodal or trimodal fillers. The additive of the nano-fillers affects slightly on the printing quality of the bimodal conductive adhesives.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science
Reference14 articles.
1. Bukat, K.
,
Koscielski, M.
,
Sitek, J.
,
Jakubowska, M.
and
Mlozniak, A.
(2011), “Silver nanoparticles effect on the wettability of Sn-Ag-Cu solder pastes and solder joints microstructure on copper”, Soldering & Surface Mount Technology, Vol. 23, pp. 150-160. 2. Bukat, K.
,
Sitek, J.
,
Koscielski, M.
,
Jakubowska, M.
,
Sloma, M.
,
Mlozniak, A.
and
Niedzwiedz, W.
(2012), “SAC 305 solder paste with carbon nanotubes – part I: investigation of the influence of the carbon nanotubes on the SAC solder paste properties”, Soldering & Surface Mount Technology, Vol. 24, pp. 267-279. 3. Kaushik, B.K.
,
Goel, S.
and
Rauthan, G.
(2007), “Future VLSI interconnects: optical fiber or carbon nanotube – a review”, Microelectronics International, Vol. 24, pp. 53-63. 4. Koscielski, M.
,
Bukat, K.
,
Sitek, J.
,
Jakubowska, M.
,
Niedźwiedź, W.
and
Młożniak, A.
(2012), “SAC 305 solder paste with silver nanopowder and carbon nanotubes addition: basic properties of pastes and solder joints”, Proceedings of 35th International Spring Seminar on Electronics Technology, Bad Aussee, Austria, 9-13 May. 5. Liu, J.
,
Lu, X.Z.
and
Cao, L.Q.
(2007), “Reliability aspect of electronics packaging technology using conductive adhesives”, Journal of Shanghai University (English Edition), Vol. 11, pp. 1-24.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|