Finite element modeling and simulating pilling of polyester fabric

Author:

Xiao QiORCID

Abstract

PurposeThe paper aims to build a finite element simulation model for pilling of polyester hairiness on the fabric to study the effects of hairiness performance on pilling and reveal pilling mechanisms.Design/methodology/approachThe finite element simulation model of pilling of polyester hairiness was established by ABAQUS. Polyester hairiness was treated as elastic thin rod, which was divided by two-node linear three-dimensional truss element. The effects of hairiness elastic modulus, hairiness friction coefficient and hairiness diameter on frictional dissipation energy, strain energy and kinetic energy produced by pilling have been studied. The analysis solution values were compared with the finite element simulation results, which was used to verify finite element simulation.FindingsThe paper provides new insights about how to reveal pilling mechanisms of polyester hairiness with different performance. Comparing finite element simulation results with analysis solutions shows that the fitness is greater than 0.96, which verifies finite element simulation. Larger hairiness elastic modulus gives rise to higher friction dissipation energy and strain energy of hairiness but lower kinetic energy. Increasing friction coefficient enhances friction dissipation and strain energy of hairiness. However, kinetic energy decreases with the increase of friction coefficient. Hairiness diameter also has an important effect on hairiness entanglement and pilling. Increasing hairiness diameter can decrease friction dissipation energy but enhance strain energy and kinetic energy.Research limitations/implicationsFinite element simulation was verified by analysis solutions. The solutions include friction dissipation energy, strain energy and kinetic energy, which cannot measured b experiment. Therefore, researchers are encouraged to simulate pilling to obtain pilling grades, which be compared with experiment results.Originality/valuePilling of polyester hairiness was simulated by ABAQUS. This method makes pilling process visualization, and pilling mechanisms was revealed from non-linear dynamics.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3