Abstract
PurposeNowadays, most methods of illusion garment evaluation are based on the subjective evaluation of experienced practitioners, which consumes time and the results are too subjective to be accurate enough. It is necessary to explore a method that can quantify professional experience into objective indicators to evaluate the sensory comfort of the optical illusion skirt quickly and accurately. The purpose of this paper is to propose a method to objectively evaluate the sensory comfort of optical illusion skirt patterns by combining texture feature extraction and prediction model construction.Design/methodology/approachFirstly, 10 optical illusion sample skirts are produced, and 10 experimental images are collected for each sample skirt. Then a Likert five-level evaluation scale is designed to obtain the sensory comfort level of each skirt through the questionnaire survey. Synchronously, the coarseness, contrast, directionality, line-likeness, regularity and roughness of the sample image are calculated based on Tamura texture feature algorithm, and the mean, contrast and entropy are extracted of the image transformed by Gabor wavelet. Both are set as objective parameters. Two final indicators T1 and T2 are refined from the objective parameters previously obtained to construct the predictive model of the subjective comfort of the visual illusion skirt. The linear regression model and the MLP neural network model are constructed.FindingsResults show that the accuracy of the linear regression model is 92%, and prediction accuracy of the MLP neural network model is 97.9%. It is feasible to use Tamura texture features, Gabor wavelet transform and MLP neural network methods to objectively predict the sensory comfort of visual illusion skirt images.Originality/valueCompared with the existing uncertain and non-reproducible subjective evaluation of optical illusion clothing based on experienced experts. The main advantage of the authors' method is that this method can objectively obtain evaluation parameters, quickly and accurately obtain evaluation grades without repeated evaluation by experienced experts. It is a method of objectively quantifying the experience of experts.
Subject
Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)
Reference18 articles.
1. Seeing is deceiving: the psychology of visual illusions;Optica Acta: International Journal of Optics,1979
2. Content-based image retrieval based on texture and color combinations using Tamura texture features and Gabor texture methods;American Journal of Neural Networks and Applications,2019
3. Fabric defect classification based on local binary patterns and Tamura texture feature method;Computer Engineering and Applications,2012
4. Research on objective evaluating model of seam pucker;Journal of Silk,2011
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献