Multilayer ferrite inductors for the use at high temperatures

Author:

Bartsch Heike,Thiele Sebastian,Mueller Jens,Schabbel Dirk,Capraro Beate,Reimann Timmy,Grund Steffen,Töpfer Jörg

Abstract

Purpose This paper aims to investigate the usability of the nickel copper zinc ferrite with the composition Ni0.4Cu0.2Zn0.4Fe1.98O3.99 for the realization of high-temperature multilayer coils as discrete components and integrated, buried function units in low temperature cofired ceramics (LTCC). Design/methodology/approach LTCC tapes were cast and test components were produced as multilayer coils and as embedded coils in a dielectric tape. Different metallization pastes are compared. The properties of the components were measured at room temperature and higher temperature up to 250°C. The results are compared with simulation data. Findings The silver palladium paste revealed the highest inductance values within the study. The measured characteristics over a frequency range from 1 MHz to 100 MHz agree qualitatively with the measurements obtained from toroidal test samples. The inductance increases with increasing temperature and this influence is lower than 10%. The characteristic of embedded coils is comparable with this of multilayer components. The effective permeability of the ferrite material reaches values around 130. Research limitations/implications The research results based on a limited number of experiments; therefore, the results should be verified considering higher sample sizes. Practical implications The results encourage the further investigation of the material Ni0.4Cu0.2Zn0.4Fe1.98O3.99 for the use as high-temperature ferrite for the design of multilayer coils with an operation frequency in the range of 5-10 MHz and operation temperatures up to 250°C. Originality/value It is demonstrated for the first time, that the material Ni0.4Cu0.2Zn0.4Fe1.98O3.99 is suitable for the realization of high-temperature multilayer coils and embedded coils in LTCC circuit carriers with high performance.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference12 articles.

1. Coilcraft Inc (2011), “TH power inductors”, AGP2923, data sheet available at: www.coilcraft.com/agp2923.cfm (accessed 30 March 2020).

2. High-temperature passive components for extreme environments,2016

3. Overview on low temperature co-fired ceramic sensors;Sensors and Actuators A: Physical,2015

4. High-temperature passive components, interconnections and packaging

5. Ni-Cu-Zn ferrites for low temperature firing. I. Ferrite composition and its effect on sintering behavior and permeability;Journal of Electroceramics,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3