Thermomechanical reliability of conductive tracks screen printed on flexible magnetic sheets

Author:

Janeczek Kamil,Arazna Aneta,Lipiec Krzysztof

Abstract

Purpose The aim of this paper is to present thermal and mechanical durability of conductive tracks screen-printed with silver polymer pastes on flexible magnetic sheets. Design/methodology/approach A test pattern that consisted of three straight lines was printed with two different silver pastes on a flexible magnetic sheet and a polyethylene naphthalate (PEN) foil for comparison. Electrical properties of these lines were examined by resistance measurements and their thickness was measured with a digital microscope on cross sections. Cyclic bending was performed to investigate mechanical properties of prepared samples as well as thermal shocks to analyse their thermal durability. Further, samples after thermal shocks underwent cyclic bending to test influence of thermal exposure on mechanical properties of the prepared samples. Changes in the test lines after the thermal and mechanical tests were assessed by resistance measurements and microscopic analysis of surface and internal structure of the test lines. Findings It was found that the most important factor having an impact on electrical, mechanical and thermal properties of the conductive tracks screen-printed on magnetic sheets is a type of paste used. The samples made with the paste PM-406 exhibited lower resistance because of a higher layer thickness compared to the lines printed with the paste PF-050. The PM-406 layers were revealed to be less durable to mechanical and thermal exposures. An analogical relationship was noticed for the samples made with PM-406 and PF-050 on a PEN foil after thermal shocks and cyclic bending. When magnetic sheets were used as a substrate, a bigger degree of damage was observed for the PF-050 samples, which even lost their electrical continuity after 1,000 bending cycles and thermal cycles, irrespective of their number. Some damage was also noticed in the magnetic sheet after the bending and thermal cycles. Research limitations/implications Further investigations are required to examine the influence of other types of thermal exposure on electrical properties of lines printed on magnetic sheets. Other types of magnetic sheets are also recommended to be investigated as substrate materials. Practical implications The results reported in this study can be useful among others for designers of radio frequency identification (RFID) systems, which are intended to operate in a challenging environment with strong mechanical and thermal exposures. Originality/value This paper contains valuable information concerning mechanical and thermal properties of conductive tracks screen-printed on magnetic sheets which can be used, i.e. for designing of reliable near field communication/high frequency (NFC/HF)-RFID tags suitable for metallic surface.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Organic photovoltaic cells with all inkjet printed layers and freedom of form,2014

2. Deployment of printed RFID in Egyptian apparel retailing;International Design Journal,2015

3. Performance evaluation of 13.56 MHz RFID Antenna operating in metallic environments,2012

4. Passive UHF RFID packaging with electromagnetic band gap (EBG) material for metallic objects tracking;IEEE Transactions on Components, Packaging and Manufacturing Technology,2011

5. Screen-printed resistive pressure sensors containing graphene nanoplatelets and carbon nanotubes;Sensors,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative controlled of DNA droplets size inkjet printhead;2023 9th International Conference on Applied System Innovation (ICASI);2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3