Competitive advantage in algorithmic trading: a behavioral innovation economics approach

Author:

Cooper Ricky,Currie Wendy L.,Seddon Jonathan J.M.ORCID,Van Vliet BenORCID

Abstract

Purpose This paper investigates the strategic behavior of algorithmic trading firms from an innovation economics perspective. The authors seek to uncover the sources of competitive advantage these firms develop to make markets inefficient for them and enable their survival. Design/methodology/approach First, the authors review expected capability, a quantitative behavioral model of the sustainable, or reliable, profits that lead to survival. Second, they present qualitative data gathered from semi-structured interviews with industry professionals as well as from the academic and industry literatures. They categorize this data into first-order concepts and themes of opportunity-, advantage- and meta-seeking behaviors. Associating the observed sources of competitive advantages with the components of the expected capability model allows us to describe the economic rationale these firms have for developing those sources and explain how they survive. Findings The data reveals ten sources of competitive advantages, which the authors label according to known ones in the strategic management literature. We find that, due to the dynamically complex environments and their bounded resources, these firms seek heuristic compromise among these ten, which leads to satisficing. Their application of innovation methodology that prescribes iterative ex post hypothesis testing appears to quell internal conflict among groups and promote organizational survival. The authors believe their results shed light on the behavior and motivations of algorithmic market actors, but also of innovative firms more generally. Originality/value Based upon their review of the literature, this is the first paper to provide such a complete explanation of the strategic behavior of algorithmic trading firms.

Publisher

Emerald

Subject

Strategy and Management,Finance,Accounting

Reference128 articles.

1. Equity markets and computational intelligence,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3