Real‐time, decentralized and bio‐inspired topology control for holonomic autonomous vehicles

Author:

Şafak Şahin Cem,Ümit Uyar M.

Abstract

PurposeThis paper aims to present an approach for a bio‐inspired decentralization topology control mechanism, called force‐based genetic algorithm (FGA), where a genetic algorithm (GA) is run by each holonomic autonomous vehicle (HAV) in a mobile ad hoc network (MANET) as software agent to achieve a uniform spread of HAVs and to provide a fully connected network over an unknown geographical terrain. An HAV runs its own FGA to decide its next movement direction and speed based on local neighborhood information, such as obstacles and the number of neighbors, without a centralized control unit or global knowledge.Design/methodology/approachThe objective function used in FGA is inspired by the equilibrium of the molecules in physics where each molecule tries to be in the balanced position to spend minimum energy to maintain its position. In this approach, a virtual force is assumed to be applied by the neighboring HAVs to a given HAV. At equilibrium, the aggregate virtual force applied to an HAV by its neighbors should sum up to zero. If the aggregate virtual force is not zero, it is used as a fitness value for the HAV. The value of this virtual force depends on the number of neighbors within the communication range of Rcom and the distance among them. Each chromosome in our GA‐based framework is composed of speed and movement direction. The FGA is independently run by each HAV as a topology control mechanism and only utilizes information from neighbors and local terrain to make movement and speed decisions to converge towards a uniform distribution of HAVs. The authors developed an analytical model, simulation software and several testbeds to study the convergence properties of the FGA.FindingsThe paper finds that coverage‐centric, bio‐inspired, mobile node deployment algorithm ensures effective sensing coverage for each mobile node after initial deployment. The FGA is also an energy‐aware self‐organization framework since it reduces energy consumption by eliminating unnecessary excessive movements. Fault‐tolerance is another important feature of the GA‐based approach since the FGA is resilient to losses and malfunctions of HAVs. Furthermore, the analytical results show that the authors' bio‐inspired approach is effective in terms of convergence speed and area coverage uniformity. As seen from the experimental results, the FGA delivers promising results for uniform autonomous mobile node distribution over an unknown geographical terrain.Originality/valueThe proposed decentralized and bio‐inspired approach for autonomous mobile nodes can be used as a real‐time topology control mechanism for commercial and military applications since it adapts to local environment rapidly but does not require global network knowledge.

Publisher

Emerald

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A fuzzy trust-based routing model for mitigating the misbehaving nodes in mobile ad hoc networks;International Journal of Intelligent Computing and Cybernetics;2018-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3