Publication bias in meta-analyses of the therapeutic efficacy of remdesivir interventions for patients with COVID-19

Author:

Motahari-Nezhad Hossein,Sadeghdaghighi Aslan

Abstract

Purpose No comprehensive statistical assessment of publication bias has been conducted in remdesivir-based intervention research for COVID-19 patients. This study aims to examine all meta-analyses of the efficacy of remdesivir interventions in COVID-19 patients and perform a statistical assessment of publication bias. Design/methodology/approach This is an analytic study conducted to assess the impact of publication bias on the results of meta-analyses of remdesivir-based interventions in patients infected with COVID-19. All English full-text meta-analyses published in peer-reviewed journals in 2019–2021 were included. A computerized search of PubMed and Web of Science electronic databases was performed on December 24, 2021. The trim-and-fill method calculated the number of missing studies and the adjusted cumulative effect sizes. Findings The final analysis comprised 21 studies with 88 outcomes. The investigation revealed missing studies in 46 outcomes (52%). Seventy-six missing studies were replaced in the outcomes using the trim-and-fill procedure. The adjusted recalculated effect sizes of the 27 outcomes increased by an average of 0.04. In comparison, the adjusted effect size of 18 outcomes fell by an average of 0.036. Only 14 out of 46 outcomes with publication bias were subjected to a gray literature search (30%). To discover related research, no gray literature search was conducted in most outcomes with publication bias (n = 32; 70%). In conclusion, the reported effect estimates regarding the effect of remdesivir in COVID-19 patients are only slightly affected by publication bias and can be considered authentic. Health-care decision-makers in COVID-19 should consider current research results when making clinical decisions. Research limitations/implications Most health decisions are based on the effect sizes revealed in meta-analyses. When deciding on remdesivir-based treatment for COVID-19 patients, therefore, the outcomes of this investigation may be of paramount importance to health policymakers, leading to better treatment strategies. Practical implications According to the results, no major publication bias and missing studies were detected on average. Therefore, the calculated effect sizes of remdesivir-based interventions on meta-analyses can be used as authentic and unbiased benchmarks by health-care decision-makers in treating patients with COVID-19. Originality/value This is the first study to examine the effect of publication bias and gray literature searches on the results of meta-analyses of treatment with COVID-19 (remdesivir).

Publisher

Emerald

Subject

Library and Information Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3