Abstract
PurposeThe current study aims to investigate the factors that impact the feedback received on answers to questions in social Q&A communities and whether the expertise-required question influences the role of these factors on the feedback.Design/methodology/approachTo understand the antecedents and consequences that influence the feedback received on answers to online community questions, the elaboration likelihood model (ELM) is applied in this study. The authors use web data crawling methods and a combination of quantitative analyses. The data for this study came from Zhihu; in total, 353,775 responses were obtained to 1,531 questions, ranging from 49 to 23,681 responses per question. Each answer received 0 to 113,892 likes and 0 to 6,250 comments.FindingsThe answers' cognitive and emotional components and the answerer's influence positively affect user feedback behavior. In addition, the expertise-required question moderates the effects of the answer's cognitive component and emotional component on the user feedback, moderating the effects of the answerer's influence on the user approval feedback.Originality/valueThis study builds upon a limited yet growing body of literature on a theme of great relevance to scholars, practitioners and social media users concerning the effects of the connotation of answers (i.e. their cognitive and emotional components) and the answerer's influence on user feedback (i.e. approval and collaborative feedback) in social Q&A communities. The authors further consider the moderating role of the domain expertise required by the question (expertise-required question). The ELM model is applied to explore the relationships between questions, answers and feedback. The findings of this study add a new perspective to the research on user feedback and have implications for the management of social Q&A communities.
Subject
Library and Information Sciences,Computer Science Applications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献