TN-MR: topic-aware neural network-based mobile application recommendation

Author:

Chen Junyi,Cao Buqing,Peng Zhenlian,Xie Ziming,Liu Shanpeng,Peng Qian

Abstract

Purpose With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed. Design/methodology/approach In this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked. Findings Experimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR. Originality/value In this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.

Publisher

Emerald

Reference34 articles.

1. Topic-aware social influence propagation models;ICDM,2012

2. DeepHawkes: Bridging the gap between prediction and understanding of information Cascades,2017

3. CrossPlatform app recommendation by jointly modeling ratings and texts;ACM Transactions on Information Systems,2017

4. SimApp: a framework for detecting similar mobile applications by online kernel learning,2015

5. Wide and deep learning for recommender systems,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3