Implicit modified enthalpy method with application to thin film melting

Author:

Hess Christopher K.,Miaoulis Ioannis N.

Abstract

During the thermal processing of thin films in which low intensity line heat sources are used, extended processing times are often required to reach steady state (˜15 sec). In addition, the melting of the film may occur some time after processing has begun, and therefore there is no initial melting condition within the film. In such cases, computer simulations may become very time consuming, and the development of an efficient computational method which incorporates the initial formation of the melt during processing is necessary. A general technique was developed to accurately model two‐dimensional heat conduction in a multilayer film structure with one‐dimensional phase change in one of the thin films. These conditions frequently exist in thin film thermal processing when the thermal gradient through the thickness of the melting film can be considered negligible. The method involves an implicit formulation of the modified enthalpy method. The solid/liquid interface energy‐balance equation is taken into account which allows the exact location of the interface to be tracked within a control volume. A comparison is made between the explicit and implicit modified methods to test efficiency and accuracy. The implicit method is then applied to the zone‐melting recrystallization of a silicon thin film in a multilayer structure.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3