Big data and connectivity in long-linked supply chains

Author:

Engelseth Per,Wang Hao

Abstract

Purpose This study aims to consider the developing of strategic use of big data in association with long-linked physical goods supply focusing on risk management. Design/methodology/approach Analysis is grounded on a case study of organizing the import of machine parts from Shanghai, China, to Norway. An analytical framework is developed through a literature review on long linked supply chains, big data and risk management. Findings Analysis reveals that big data use in this scenario encompasses mainly around handling risks associated with transformations in the supply chain, a data-driven approach. Complexity is founded in transformation – the flows of goods and information. Supply chain dynamics represent an important source for data acquisition for big data analytics. Research limitations/implications The qualitative nature of the study limits the aim of generalization. An alternative view of big data as process is discussed and proposed, adapted to supply chain management and industrial marketing functionality. Originality/value This is the first part in an ongoing research project aimed at developing a research approach to study information technology use in the inherently complex setting and scope of a long linked supply network. This scope of investigation enhances big data associated with operations dynamics providing foundation for future research on how to use big data to mitigate risk in long linked supply chains.

Publisher

Emerald

Subject

Marketing,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3