Influence of selective laser sintering process parameters on microstructure and physicochemical properties of poly(vinyl alcohol) for the production of scaffolds

Author:

Higa Camila Fernandes,Gradowski Thatyanne,Elifio-Esposito Selene,de Oliveira Marcelo Fernandes,Inforçatti Paulo,da Silva Jorge Vicente Lopes,Amorim Fred Lacerda,Meruvia Michelle Sostag

Abstract

Purpose This study aims to investigate the production of scaffolds by selective laser sintering (SLS) using poly(vinyl alcohol) (PVA) polymer, for in vitro studies, a relatively new and growing area in which scaffolds could be used in the design of three-dimensional models for in vitro disease model or tissue equivalent for safety and effectiveness tests. Design/methodology/approach The influence of the SLS process parameters laser power, 26 W and 32 W, and number of laser scans, 1, 2, 4 and 6, on the surface microstructure of the samples and on the degree of crystallinity and chemical stability of PVA material, was investigated using powder with particle size of 20-320 µm. Laser sintered PVA samples were subjected to cell culture tests using osteoblastic cells derived from human osteosarcoma (SaOs-2). Findings The laser power has no significant influence on the microstructure of the laser-sintered samples, however the number of scans has a considerable influence on the sintering degree; the SLS process causes a decrease in the degree of crystallinity and changes the chemical structure of the as-received PVA, especially when using higher laser power and more number of scans. Preliminary in vitro cell culture tests show that the laser-sintered PVA material is biocompatible with SaOs-2 cells. Originality/value SLS offers good potential for the fabrication of scaffolds and thus, may be applied as an alternative to conventional scaffold fabrication processes to overcome their limitations.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference24 articles.

1. Standard guide for assessing microstructure of polymeric scaffolds for use in Tissue-Engineered medical products;ASTM F2450-10;ASTM – American Society for Testing and Materials,2010

2. Bourell, D.L., Leu, M.C. and and Rosen, D.W. (2009), “Roadmap for additive Manufacturing – Identifying the future of freeform processing”, working paper, Laboratory for Freeform Fabrication, Advanced Manufacturing Center, The University of Texas at Austin.

3. Scaffolding in tissue engineering: general approaches and tissue-specific considerations;European Spine Journal,2008

4. Cell responses to surface and architecture of tissue engineering scaffolds,2011

5. Introduction to rapid prototyping of biomaterials,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3