Abstract
Purpose
Additive manufacturing (AM) enables the fabrication of complex geometries beyond the capability of traditional manufacturing methods. Complex lattice structures have enabled engineering innovation; however, the use of traditional computer-aided design (CAD) methods for the generation of lattice structures is inefficient, time-consuming and can present challenges to process integration. In an effort to improve the implementation of lattice structures into engineering applications, this paper aims to develop a programmatic lattice generator (PLG).
Design/methodology/approach
The PLG method is computationally efficient; has direct control over the quality of the stereolithographic (STL) file produced; enables the generation of more complex lattice than traditional methods; is fully programmatic, allowing batch generation and interfacing with process integration and design optimization tools; capable of generating a lattice STL file from a generic input file of node and connectivity data; and can export a beam model for numerical analysis.
Findings
This method has been successfully implemented in the generation of uniform, radial and space filling lattices. Case studies were developed which showed a reduction in processing time greater than 60 per cent for a 3,375 cell lattice over traditional CAD software.
Originality/value
The PLG method is a novel design for additive manufacture (DFAM) tool with unique advantages, including full control over the number of facets that represent a lattice strut, allowing optimization of STL data to minimize file size, while maintaining suitable resolution for the implemented AM process; programmatic DFAM capability that overcomes the learning curve of traditional CAD when producing complex lattice structures, therefore is independent of designer proficiency and compatible with process integration; and the capability to output both STL files and associated data for numerical analysis, a unique DFAM capability not previously reported.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献