Structural fire performance of wood-steel-wood bolted connections with and without perpendicular-to-wood grain reinforcement

Author:

Petrycki Adam Roman,Salem Osama (Sam)

Abstract

Purpose In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors. Design/methodology/approach In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation. Findings Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance. Originality/value The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference22 articles.

1. Behavior of dowelled and bolted steel-to-timber connections exposed to fire;Engineering Structures,2012

2. CCMC (2014), “Evaluation report: SWG ASSY VG plus and SWG ASSY 3.0 self-tapping wood screws”, Canadian Construction Materials Centre, Report No. CCMC 13677-R, available at: www.swgproduktion.de/fileadmin/Zulassungen/13677eCCMCEvaluationReportASSY30ASSYplusVG.pdf

3. Performance criteria used in fire safety design;Automation in Construction,1999

4. Effects of fire-retardant treatments on wood strength: a review;Wood and Fiber Science,2007

5. Fire resistance of FRP reinforced glulam beams,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3