Performance of steel-plate shear wall at high temperature

Author:

Jamshidi Morteza,Dashti NaserAbadi Heydar,Oliaei Mohammadreza

Abstract

Purpose The high heat induced by fire can substantially decrease the load-bearing capacity, which is more critical in unprotected steel structures than concrete reinforced structures. One of the conventional steel structures is a steel-plate shear wall (SPSW) in which thin infill steel plates are used to resist against the lateral loads. Due to the small thickness of infill plates, high heat seems to dramatically influence the lateral load-bearing capacity of this type of structures. Therefore, this study aims to provide an investigation into the performance of SPSW with reduced beam section at high temperature. Design/methodology/approach In the present paper, to examine the seismic performance of SPSW at high temperature, 48 single-span single-story steel frames equipped with steel plates with the thicknesses of 2.64 mm, 5 mm and 7 mm and yield stresses of 85 MPa, 165 MPa, 256 MPa and 300 MPa were numerically modeled. Furthermore, their behavioral indices, namely, strength, stiffness, ductility and hysteresis behavior, were studied at the temperatures of 20, 458, 642 and 917? The simulated models in the present paper are based on the experimental specimen presented by Vian and Bruneau (2004). Findings The obtained results revealed that the high heat harshly diminishes the seismic performance of SPSW so that the lateral strength is reduced even by 95% at substantially high temperatures. Therefore, SPSW starts losing its strength and stiffness at high temperature such that it completely loses its capacity of strength, stiffness and energy dissipation at the temperature of 917? Moreover, it was proved that by separating the percentage of their participations variations of the infill plate in SPSW, their behavior and the bare frame can be examined even at high temperatures. Originality/value To the best of the authors’ knowledge, the seismic performance of SPSW at different temperatures has not been evaluated and compared yet.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference31 articles.

1. Finite element analysis software;ABAQUS-V6.16-1,2016

2. Seismic behavior and design of steel shear walls-SEONC seminar,2001

3. Guidelines for cyclic seismic testing of components of steel structures;ATC-24,1992

4. Seismic performance of steel girder bridges with ductile cross frames using single angle x braces;Journal of Structural Engineering,2006

5. European committee for standardization, Euro-code 8: design of structures for earthquake resistance, part 3: assessment and retrofitting of buildings;CEN,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3