Author:
Bufalo Michele,Orlando Giuseppe
Abstract
Purpose
This study aims to predict overnight stays in Italy at tourist accommodation facilities through a nonlinear, single factor, stochastic model called CIR#. The contribution of this study is twofold: in terms of forecast accuracy and in terms of parsimony (both from the perspective of the data and the complexity of the modeling), especially when a regular pattern in the time series is disrupted. This study shows that the CIR# not only performs better than the considered baseline models but also has a much lower error than other additional models or approaches reported in the literature.
Design/methodology/approach
Typically, tourism demand tends to follow regular trends, such as low and high seasons on a quarterly/monthly level and weekends and holidays on a daily level. The data set consists of nights spent in Italy at tourist accommodation establishments as collected on a monthly basis by Eurostat before and during the COVID-19 pandemic breaking regular patterns.
Findings
Traditional tourism demand forecasting models may face challenges when massive amounts of search intensity indices are adopted as tourism demand indicators. In addition, given the importance of accurate forecasts, many studies have proposed novel hybrid models or used various combinations of methods. Thus, although there are clear benefits in adopting more complex approaches, the risk is that of dealing with unwieldy models. To demonstrate how this approach can be fruitfully extended to tourism, the accuracy of the CIR# is tested by using standard metrics such as root mean squared errors, mean absolute errors, mean absolute percentage error or average relative mean squared error.
Research limitations/implications
The CIR# model is notably simpler than other models found in literature and does not rely on black box techniques such as those used in neural network (NN) or data science-based models. The carried analysis suggests that the CIR# model outperforms other reference predictions in terms of statistical significance of the error.
Practical implications
The proposed model stands out for being a viable option to the Holt–Winters (HW) model, particularly when dealing with irregular data.
Social implications
The proposed model has demonstrated superiority even when compared to other models in the literature, and it can be especially useful for tourism stakeholders when making decisions in the presence of disruptions in data patterns.
Originality/value
The novelty lies in the fact that the proposed model is a valid alternative to the HW, especially when the data are not regular. In addition, compared to many existing models in the literature, the CIR# model is notably simpler and more transparent, avoiding the “black box” nature of NN and data science-based models.
Subject
Tourism, Leisure and Hospitality Management,Geography, Planning and Development
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献