Study on the screening of marine beneficial bacteria and the inhibition of sulfate-reducing bacteria corrosion in marine oil field produced water

Author:

Wang Jian,Zhang Xinyi,Du Min,Shan Xueyan,Tian Zhiyu

Abstract

Purpose The purpose of this study is to provide ideas and theoretical guidance for green, environmentally friendly and efficient “bacteriostasis with bacteria” technology. Design/methodology/approach In this paper, a beneficial strain of bacteria was extracted and purified from marine mud. Weight-loss test, morphological observation and electrochemical test were used to systematically study the effect of sulfate-reducing bacteria (SRB)-induced corrosion inhibition on X65 steel in simulated offshore oil field production water. Findings The results showed that a beneficial strain was selected and identified as Vibrio alginolyticus. Under the condition of co-culture of SRB, the average corrosion rate of X65 steel was significantly reduced. In the mixed bacterial system, the surface of X65 steel samples was relatively flat, and the structure of biofilm and corrosion product film was dense. The number of corrosion pits, the average diameter and depth of corrosion pits were significantly reduced. The localized corrosion of X65 steel was significantly inhibited. Originality/value The complex and changing marine environment makes the corrosion problem of marine steel increasingly severe, and the microbiologically influenced corrosion (MIC) caused by SRB is particularly serious. The research and development of environmentally friendly corrosion protection technology is a long-term and difficult problem. The use of beneficial microorganisms to control MIC is a green and efficient anticorrosion measure. Compared with terrestrial microorganisms, marine microorganisms can adapt to complex environments, and their metabolites exhibit special biological activities. The use of marine beneficial bacteria can inhibit SRB activity to achieve the corrosion inhibition effect.

Publisher

Emerald

Reference39 articles.

1. Marine natural products;Natural Product Reports,2023

2. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae;Applied and Environmental Microbiology,2001

3. Failure of a new 8-in pipeline from group gathering station to central tank farm;Materials Performance,2011

4. An intelligent self-defensive coating based on sulfide ion responsive nanocontainers for suppression of microbiologically influenced corrosion induced by sulfate reducing bacteria;Corrosion Science,2021

5. Interaction of marine organisms on localized corrosion of 316L stainless steel in Dalian seawater;Anti-Corrosion Methods and Materials,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3