Author:
Rui Xin,Wu Junying,Zhao Jianbin,Khamesinia Maryam Sadat
Abstract
Purpose
Based on the positive features of the shark smell optimization (SSO) algorithm, the purpose of this paper is to propose a method based on this algorithm, dynamic voltage and frequency scaling (DVFS) model and fuzzy logic to minimize the energy consumption of integrated circuits of internet of things (IoT) nodes and maximize the load-balancing among them.
Design/methodology/approach
Load balancing is a key problem in any distributed environment such as cloud and IoT. It is useful when a few nodes are overloaded, a few are under-loaded and the remainders are idle without interrupting the functioning. As this problem is known as an NP-hard one and SSO is a powerful meta-hybrid method that inspires shark hunting behavior and their skill to detect and feel the smell of the bait even from far away, in this research, this study have provided a new method to solve this problem using the SSO algorithm. Also, the study have synthesized the fuzzy logic to counterbalance the load distribution. Furthermore, DVFS, as a powerful energy management method, is used to reduce the energy consumption of integrated circuits of IoT nodes such as processor and circuit bus by reducing the frequency.
Findings
The outcomes of the simulation have indicated that the proposed method has outperformed the hybrid ant colony optimization – particle swarm optimization and PSO regarding energy consumption. Similarly, it has enhanced the load balance better than the moth flame optimization approach and task execution node assignment algorithm.
Research limitations/implications
There are many aspects and features of IoT load-balancing that are beyond the scope of this paper. Also, given that the environment was considered static, future research can be in a dynamic environment.
Practical implications
The introduced method is useful for improving the performance of IoT-based applications. We can use these systems to jointly and collaboratively check, handle and control the networks in real-time. Also, the platform can be applied to monitor and control various IoT applications in manufacturing environments such as transportation systems, automated work cells, storage systems and logistics.
Originality/value
This study have proposed a novel load balancing technique for decreasing energy consumption using the SSO algorithm and fuzzy logic.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献