Predicting thrust force during drilling of composite laminates with step drills through the Gaussian process regression

Author:

Zhang YunORCID,Xu XiaojieORCID

Abstract

PurposeHere, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.Design/methodology/approachUse of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.FindingsThis model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.Originality/valueThrough combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Reference48 articles.

1. Drilling of fiber reinforced plastics: a review;Journal of Materials Processing Technology,2007

2. Convergence rates of efficient global optimization algorithms;Journal of Machine Learning Research,2011

3. Dimensionality reduction of sensorial features by principal component analysis for ANN machine learning in tool condition monitoring of CFRP drilling;Procedia CIRP,2018

4. Machine learning approach based on fractal analysis for optimal tool life exploitation in CFRP composite drilling for aeronautical assembly;CIRP Annals,2018

5. Modeling of machining of composite materials: a review;International Journal of Machine Tools and Manufacture,2012

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3