Evaluation of regional agricultural drought vulnerability based on unbiased generalized grey relational closeness degree

Author:

Zhang DongxingORCID,Luo DangORCID

Abstract

PurposeThe purpose of this study is to propose an unbiased generalized grey relational closeness evaluation model to improve the accuracy of regional agricultural drought vulnerability decision-making results, as well as to provide theoretical support for reducing agricultural drought risk and losses.Design/methodology/approachThe index weight is calculated using a rough set and deviation minimization criterion, and the relational degree between the research object and the double reference sequence is thoroughly investigated using the generalized grey relational closeness degree. Because different index rankings can correspond to different closeness degrees, the Monte Carlo method was used to calculate an unbiased estimate of the generalized grey relational closeness degree, which was used as a decision basis.FindingsAgricultural drought vulnerability in Henan Province in 2019 was clearly spatially differentiated. The vulnerability to agricultural drought in the southern and eastern regions was generally higher than that in other regions. The evaluation results of this model are highly stable and reliable compared to those of the traditional generalized grey relational evaluation model.Practical implicationsThis study proposes an evaluation model based on an unbiased generalized grey relational closeness degree, which is important to supplement the grey relational analysis method system and plays a positive role in promoting the quantitative evaluation of regional agricultural drought vulnerability.Originality/valueThe Monte Carlo method is used to calculate the unbiased estimation of the generalized grey relational closeness degree, which solves the problem of the replacement dependence of the traditional generalized grey relational degree and the one-sidedness of the evaluation results, and provides a new research idea for the evaluation of regional agricultural drought vulnerability under cross-sectional informatics.

Publisher

Emerald

Subject

Applied Mathematics,General Computer Science,Control and Systems Engineering

Reference25 articles.

1. Rough information set and its applications in decision making;IEEE Transactions on Fuzzy Systems,2017

2. A novel methodology for groundwater flooding susceptibility assessment through machine learning techniques in a mixed-land use aquifer;Science of The Total Environment,2021

3. A new method of ascertaining attribute weight based on rough sets conditional information entropy;Chinese Journal of Management Science,2009

4. Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea;Advances in Water Resources,2011

5. Drought characterization from a multivariate perspective: a review;Journal of Hydrology,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3