Performance evaluation of iterative parallel algorithms

Author:

Hanuliak Ivan,Hanuliak Peter

Abstract

PurposeWith the availability of powerful personal computers (PCs), workstations and networking devices, the recent trend in parallel computing is to connect a number of individual workstations (PC and PC symmetric multiprocessor systems (SMP)) to solve computation‐intensive tasks in parallel way on such clusters (networks of workstations (NOW), SMP and Grid). In this sense, it is not more true to consider traditionally evolved parallel computing and distributed computing as two separate research disciplines. Current trends in high performance computing are to use NOW (and SMP) as a cheaper alternative to traditionally used massively parallel multiprocessors or supercomputers and to profit from unifying of both mentioned disciplines. The purpose of this paper is to consider the individual workstations could be so single PC as parallel computers based on modern SMP implemented within workstation.Design/methodology/approachSuch parallel systems (NOW and SMP), are connected through widely used communication standard networks and co‐operate to solve one large problem. Each workstation is threatened similarly to a processing element as in a conventional multiprocessor system. But, personal processors or multiprocessors as workstations are far more powerful and flexible than the processing elements in conventional multiprocessors. To make the whole system appear to the applications as a single parallel computing engine (a virtual parallel system), run‐time environments such as OpenMP, Java (SMP), message passing interface, Java (NOW) are used to provide an extra layer of abstraction.FindingsTo exploit the parallel processing capability of such cluster, the application program must be paralleled. The effective way how to do it for (parallelisation strategy) belongs to a most important step in developing effective parallel algorithm (optimisation). To behaviour analysis, all overheads that have the influence to performance of parallel algorithms (architecture, computation, communication, etc.) have to be taken into account. In this paper, such complex performance evaluation of iterative parallel algorithms (IPA) and their practical implementations are discussed (Jacobi and Gauss‐Seidel iteration). On real application example, the various influences in process of modelling and performance evaluation and the consequences of their distributed parallel implementations are demonstrated.Originality/valueThe paper usefully shows that better load balancing can be achieved among used network nodes (performance optimisation of parallel algorithm). Generally, it claims that the parallel algorithms or their parts (processes) with more communication (similar to analyzed Gauss‐Seidel parallel algorithm) will have better speed‐up values using modern SMP parallel system as its parallel implementation in NOW. For the algorithms or processes with small communication overheads (similar to analysed Jacobi parallel algorithm) the other network nodes can be used based on single processors.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference20 articles.

1. Allen, M. and Wilkinson, B. (1999), Parallel Programming – Techniques and Applications Using Parallel Computers, Prentice‐Hall, Upper Saddle River, NJ, p. 431.

2. Andrews, G.R. (2000), Foundations of Multithreaded, Parallel, and Distributed Programming, Addison‐Wesley, Reading, MA, p. 664.

3. Cohen, A. (2003), Numerical Analysis of Wavelet Methods, JAI Press, Greenwich, CT, p. 354.

4. Dasgupta, S., Papadimitriou, Ch.H. and Vazirani, U. (2006), Algorithms, McGraw‐Hill, New York, NY, p. 336.

5. Došlý, O. and Rehák, P. (2005), Half‐linear Differential Equations, Elsevier, Amsterdam, p. 552.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance optimization of parallel algorithms;Journal of Communications and Networks;2014-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3