Adaptive arm motion generation of humanoid robot operating in dynamic environments

Author:

Mohamed Zulkifli,Kitani Mitsuki,Capi Genci

Abstract

Purpose – The purpose of this paper is to compare the performance of the robot arm motion generated by neural controllers in simulated and real robot experiments. Design/methodology/approach – The arm motion generation is formulated as an optimization problem. The neural controllers generate the robot arm motion in dynamic environments optimizing three different objective functions; minimum execution time, minimum distance and minimum acceleration. In addition, the robot motion generation in the presence of obstacles is also considered. Findings – The robot is able to adapt its arm motion generation based on the specific task, reaching the goal position in simulated and experimental tests. The same neural controller can be employed to generate the robot motion for a wide range of initial and goal positions. Research limitations/implications – The motion generated yield good results in both simulation and experimental environments. Practical implications – The robot motion is generated based on three different objective functions that are simultaneously optimized. Therefore, the humanoid robot can perform a wide range of tasks in real-life environments, by selecting the appropriate motion. Originality/value – A new method for adaptive arm motion generation of a mobile humanoid robot operating in dynamic human and industrial environments.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3