Novel fractional hybrid impedance control of series elastic muscle-tendon actuator

Author:

Fotuhi Mohammad Javad,Bingul Zafer

Abstract

Purpose This paper aims to develope a novel fractional hybrid impedance control (FHIC) approach for high-sensitive contact stress force tracking control of the series elastic muscle-tendon actuator (SEM-TA) in uncertain environments. Design/methodology/approach In three different cases, the fractional parameters of the FHIC were optimized with the particle swarm optimization algorithm. Its adaptability to the pressure of the sole of the foot on real environments such as grass (soft), carpet (medium) and solid floors (hard) is far superior to traditional impedance control. The main aim of this paper is to derive the dynamic simulation models of the SEM-TA, to develop a control architecture allowing for high-sensitive contact stress force control in three cases and to verify the simulation models and the proposed controller with experimental results. The performance of the optimized controllers was evaluated according to these parameters, namely, maximum overshoot, steady-state error, settling time and root mean squared errors of the positions. Moreover, the frequency robustness analysis of the controllers was made in three cases. Findings Different simulations and experimental results were conducted to verify the control performance of the controllers. According to the comparative results of the performance, the responses of the proposed controller in simulation and experimental works are very similar. Originality/value Origin approach and origin experiment.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference32 articles.

1. A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control;Expert Systems with Applications,2011

2. Fractional PID controllers tuned by evolutionary algorithms for robot trajectory control;Turkish Journal of Electrical Engineering & Computer Sciences,2012

3. Positive–negative stiffness actuators;IEEE Transactions on Robotics,2018

4. Understanding environment-adaptive force control of series elastic actuators;IEEE/ASME Transactions on Mechatronics,2018

5. Dynamic adaptive hybrid impedance control for dynamic contact force tracking in uncertain environments;IEEE Access,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3