Three-dimensional cracked discs under anti-plane loading and effects of the boundary conditions

Author:

Berto Filippo,Campagnolo Alberto

Abstract

Purpose – Accordingly to the recent multi-scale model proposed by Sih and Tang, different orders of stress singularities are related to different material dependent boundary conditions associated with the interaction between the V-notch tip and the material under the remotely applied loading conditions. This induces complex three-dimensional stress and displacement fields in the proximity of the notch tip, which are worthy of investigation. The paper aims to discuss these issues. Design/methodology/approach – Starting from Sih and Tang’s model, in the present contribution the authors propose some analytical expressions for the calculation of the strain energy density (SED) averaged over a control volume embracing the V-notch tip. The expressions vary as a function of the different boundary conditions. Dealing with the specific crack case, the results from the analytical frame are compared with those determined numerically under linear-elastic hypotheses, by applying different constraints to the through-the-thickness crack edges in three-dimensional discs subjected to Mode III loading. Free-free and free-clamped cases are considered. Findings – Due to three-dimensional effects, the application of a nominal Mode III loading condition automatically provokes coupled Modes (I and II). Not only the intensity of the induced modes but also their degree of singularity depend on the applied conditions on the crack flanks. The variability of local SED through the thickness of the disc is analysed by numerical analyses and compared with the theoretical trend. Originality/value – The capability of the SED to capture the combined three-dimensional effects is discussed in detail showing that this parameter is particularly useful when the definition of the stress intensity factors (SIFs) is ambiguous or the direct comparison between SIFs with odd dimensionalities is not possible.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3