Transforming e-participation: VR-dialogue – building and evaluating an AI-supported framework for next-gen VR-enabled e-participation research

Author:

Porwol Lukasz,Garcia Pereira Agustin,Dumas Catherine

Abstract

Purpose The purpose of this study is to explore whether immersive virtual reality (VR) can complement e-participation and help alleviate some major obstacles that hinder effective communication and collaboration. Immersive virtual reality (VR) can complement e-participation and help alleviate some major obstacles hindering effective communication and collaboration. VR technologies boost discussion participants' sense of presence and immersion; however, studying emerging VR technologies for their applicability to e-participation is challenging because of the lack of affordable and accessible infrastructures. In this paper, the authors present a novel framework for analyzing serious social VR engagements in the context of e-participation. Design/methodology/approach The authors propose a novel approach for artificial intelligence (AI)-supported, data-driven analysis of group engagements in immersive VR environments as an enabler for next-gen e-participation research. The authors propose a machine-learning-based VR interactions log analytics infrastructure to identify behavioral patterns. This paper includes features engineering to classify VR collaboration scenarios in four simulated e-participation engagements and a quantitative evaluation of the proposed approach performance. Findings The authors link theoretical dimensions of e-participation online interactions with specific user-behavioral patterns in VR engagements. The AI-powered immersive VR analytics infrastructure demonstrated good performance in automatically classifying behavioral scenarios in simulated e-participation engagements and the authors showed novel insights into the importance of specific features to perform this classification. The authors argue that our framework can be extended with more features and can cover additional patterns to enable future e-participation immersive VR research. Research limitations/implications This research emphasizes technical means of supporting future e-participation research with a focus on immersive VR technologies as an enabler. This is the very first use-case for using this AI and data-driven infrastructure for real-time analytics in e-participation, and the authors plan to conduct more comprehensive studies using the same infrastructure. Practical implications The authors’ platform is ready to be used by researchers around the world. The authors have already received interest from researchers in the USA (Harvard University) and Israel and run collaborative online sessions. Social implications The authors enable easy cloud access and simultaneous research session hosting 24/7 anywhere in the world at a very limited cost to e-participation researchers. Originality/value To the best of the authors’ knowledge, this is the very first attempt at building a dedicated AI-driven VR analytics infrastructure to study online e-participation engagements.

Publisher

Emerald

Subject

Information Systems and Management,Computer Science Applications,Public Administration

Reference53 articles.

1. The influence of trust and subjective norms on citizens’ intentions to engage in e-participation on e-government websites,2015

2. How perceptions of e-participation levels influence the intention to use e-government websites;Transforming Government: People, Process and Policy,2016

3. Random forest in remote sensing: a review of applications and future directions;ISPRS Journal of Photogrammetry and Remote Sensing,2016

4. Toward a definition of ‘virtual worlds;Journal for Virtual Worlds Research,2008

5. Overview of virtual reality technologies,2013

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3