Application selection of dry film lubricant on carbon steel surface and antifriction mechanism

Author:

Fanjing Meng,Pang Minghua,Ma Lijie

Abstract

Purpose Carbon steel has a high application rate in modern industry, but this type of steel has the defect of high wear. This study aims to improve the surface friction and wear performance of carbon steel under such working conditions. Design/methodology/approach In this study, a dry film lubricant based on graphite powder was prepared by the ultrasonic dispersion method, and deposited on the surface of carbon steel specimens by the simple pressure spraying technology. At the same time, molybdenum disulfide and polytetrafluoroethylene dry film lubricants were developed by the same method, and the comparative experimental study on friction and wear was carried out in the end-face friction tester. Findings The results show that the deposition effect of graphite and molybdenum disulfide dry film lubricants on the surface of carbon steel is obviously better than that of polytetrafluoroethylene dry film lubricant. Compared with molybdenum disulfide and polytetrafluoroethylene dry film lubricant, graphite dry film lubricant has the best friction and wear performance on the surface of carbon steel. The working life of carbon steel specimens sprayed with graphite dry film lubricant decreases with the increase of pressure load and rotation speed. The combination of load and sliding speed will accelerate the transition of the coating to a stable direction. In addition, the micro lubricant particles formed in the wear process will form particle flow lubrication, and the appropriate addition of particle powder of the same material will also prolong the normal antifriction time of the lubricant. Originality/value These findings developed a dry film lubricant that can effectively improve the friction and wear properties of carbon steel surface.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3