Effect of large-area texture/slip surface on journal bearing considering cavitation

Author:

Lin Qiyin,Wei Zhengying,Wang Ning,Chen Wei

Abstract

Purpose – The purpose of this paper is to study the influence of large-area texture/slip surface, especially the area and position of large-area texture surface on journal bearing, and improve the tribological performances of journal bearing. Design/methodology/approach – A modified texture/slip numerical boundary condition with double parameters is presented and is applied onto the region where surface textures locate to represent the impact of actual texture/slip surface. A phase change condition is used to analyze cavitation phenomena. Findings – The global/cumulative texture effect can be represented by applying texture/slip condition onto the region where it locates. The area and position of texture/slip surface would significantly affect the cavitation and load-carrying capacity. Texture/slip surface would not affect the pressure and load-carrying capacity when it locates at cavitation zone. The effect of texture/slip surface on load-carrying capacity would be beneficial if it locates at the pressure rise region, but its effect would be adverse if it locates at the pressure drop region. Well-designed texture/slip surface can improve tribological performances. Originality/value – The developed texture/slip boundary condition can be a suitable and useful tool to analyze the effect of large-area texture/slip surface and especially to optimize the area and position of large-area texture surface. This approach can be complementary to conventional approach which is used to analyze the influence of textures’ real configurations and parameters.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3