Nanotribological characteristics of laser surface melted Stellite 12+Mo hardfacing

Author:

Dilawary Shaikh Asad Ali,Motallebzadeh Amir,Afzal Muhammad,Atar Erdem,Cimenoglu Huseyin

Abstract

Purpose The purpose of the study is to examine the sliding wear performance of plasma transfer arc (PTA) deposited and laser surface melted (LSM) Mo modified Stellite 12 hardfacings under high contact stresses (i.e. >20 GPa). Design/methodology/approach For this purpose, after structural characterization, sliding wear tests have been conducted using sphero-conical diamond indenter as the counterface with different normal loads. The wear tracks formed on the hardfacings were examined by atomic force microscopy and scanning electron microscopy. Findings Both hardfacings showed severe wear (at high contact stress levels ranging from 24 to 41 GPa), which progressed by plastic deformation, although the wear resistance of LSMed hardfacings was better than the PTA hardfacings by a factor of two due to its near surface microstructure characterized as carbide-rich zone. Originality/value Sliding wear characterization of a promising 10 Wt.% Mo modified version of commercial Stellite 12 hardfacings (as reported previously by authors) was done in as PTA and LSMed states using nanomechanical test system. To the best of authors’ knowledge, no report is available in the open literature on such hardfacings under these testing conditions.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3