Effect of resin content on tribological behavior of brake pad composite material

Author:

Yanar Harun,Ayar Hasan Huseyin,Demirtas Muhammet,Purcek Gencaga

Abstract

Purpose This paper aims to investigate the effect of straight phenolic resin content on the fade behavior, frictions and wear characteristics of pre-determined brake pad composite matrix having specific amount of barite (BaSO4), rock wool, Kevlar, graphite and magnetite. Design/methodology/approach Different amount of resin ranging between 16 and 20 wt. per cent were added by changing only the filler (barite) content of composite matrix. Subsequently, friction and wear behavior of the composite samples were analyzed using a special pin-on-disc type test system developed for brake pad sample. The worn surfaces were investigated by SEM and three-dimensional (3D) surface profilometer. Findings The average coefficient of friction (CoF) of composite samples and temperature of the disc surface showed a linear increase with decreasing the resin content. The sample having 20 wt. per cent resin showed the minimum wear rate with smooth worn surface. But the amount of fade is quite high in that sample. Decreasing resin content decreased the fade formation, and the composite with 16 per cent resin brought about the minimum fade formation. As the fade formation is unwanted in brake pad applications, the composite with 16 wt. per cent resin was proposed as the most appropriate one considering the performance parameters related to friction and wear. Originality/value This paper optimizes the resin content of composite brake pad materials to achieve the best combination of its tribo-performance and mechanical properties and provides valuable information for scientists and engineers working in that area.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3