Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5

Author:

Kim Yoosin,Dwivedi Rahul,Zhang Jie,Jeong Seung Ryul

Abstract

Purpose – The purpose of this paper is to mine competitive intelligence in social media to find the market insight by comparing consumer opinions and sales performance of a business and one of its competitors by analyzing the public social media data. Design/methodology/approach – An exploratory test using a multiple case study approach was used to compare two competing smartphone manufacturers. Opinion mining and sentiment analysis are conducted first, followed by further validation of results using statistical analysis. A total of 229,948 tweets mentioning the iPhone6 or the GalaxyS5 have been collected for four months following the release of the iPhone6; these have been analyzed using natural language processing, lexicon-based sentiment analysis, and purchase intention classification. Findings – The analysis showed that social media data contain competitive intelligence. The volume of tweets revealed a significant gap between the market leader and one follower; the purchase intention data also reflected this gap, but to a less pronounced extent. In addition, the authors assessed whether social opinion could explain the sales performance gap between the competitors, and found that the social opinion gap was similar to the shipment gap. Research limitations/implications – This study compared the social media opinion and the shipment gap between two rival smart phones. A business can take the consumers’ opinions toward not only its own product but also toward the product of competitors through social media analytics. Furthermore, the business can predict market sales performance and estimate the gap with competing products. As a result, decision makers can adjust the market strategy rapidly and compensate the weakness contrasting with the rivals as well. Originality/value – This paper’s main contribution is to demonstrat the competitive intelligence via the consumer opinion mining of social media data. Researchers, business analysts, and practitioners can adopt this method of social media analysis to achieve their objectives and to implement practical procedures for data collection, spam elimination, machine learning classification, sentiment analysis, feature categorization, and result visualization.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3