A comparison of minimum variance and maximum Sharpe ratio portfolios for mainstream investors

Author:

Vinzelberg Anja,Auer Benjamin RainerORCID

Abstract

PurposeMotivated by the recent theoretical rehabilitation of mean-variance analysis, the authors revisit the question of whether minimum variance (MinVar) or maximum Sharpe ratio (MaxSR) investment weights are preferable in practical portfolio formation.Design/methodology/approachThe authors answer this question with a focus on mainstream investors which can be modeled by a preference for simple portfolio optimization techniques, a tendency to cling to past asset characteristics and a strong interest in index products. Specifically, in a rolling-window approach, the study compares the out-of-sample performance of MinVar and MaxSR portfolios in two asset universes covering multiple asset classes (via investable indices and their subindices) and for two popular input estimation methods (full covariance and single-index model).FindingsThe authors find that, regardless of the setting, there is no statistically significant difference between MinVar and MaxSR portfolio performance. Thus, the choice of approach does not matter for mainstream investors. In addition, the analysis reveals that, contrary to previous research, using a single-index model does not necessarily improve out-of-sample Sharpe ratios.Originality/valueThe study is the first to provide an in-depth comparison of MinVar and MaxSR returns which considers (1) multiple asset classes, (2) a single-index model and (3) state-of-the-art bootstrap performance tests.

Publisher

Emerald

Subject

Finance

Reference108 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of financial restatements on sell-side recommendation accuracy;Finance Research Letters;2023-07

2. Risk-adjusted investment performance of green and black portfolios and impact of toxic divestments in emerging markets;Energy Economics;2022-12

3. Class Topper Optimization for the Problem of Portfolio Optimization with a Restricted Set of Assets;2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP);2022-07-21

4. Portfolio Optimisation Using Ulimisana Optimisation Algorithm;2022 8th International Conference on Control, Decision and Information Technologies (CoDIT);2022-05-17

5. The Sharpe Ratio’s Upper Bound of the Portfolios in the Presence of a Benchmark: Application to the US Financial Market;Journal of Mathematical Finance;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3