Frictional wear stability mechanisms of an activated carbon composite derived from palm kernel by phase transformation study

Author:

Mahmud Dayang Nor Fatin,Abdollah Mohd Fadzli Bin,Masripan Nor Azmmi Bin,Tamaldin Noreffendy,Amiruddin Hilmi

Abstract

Purpose The purpose of this paper is to investigate the mechanisms of frictional wear stability of an activated carbon composite derived from palm kernel using phase transformation study. Design/methodology/approach The unlubricated sliding test was executed using a ball-on-disc tribometer at different loads with a constant speed, sliding distance and temperature. Findings Results of this paper suggest that stability of friction and wear of the test materials are primarily due to the phase transformation of the composite surface layer. Research limitations/implications However, the effectiveness of the transfer layer as a medium for low friction and wear is only limited at certain applied loads. Originality/value This is the first study, to the authors’ knowledge, to find out the mechanisms of low frictional wear properties of an activated carbon composite derived from palm kernel using phase transformation study.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference29 articles.

1. Experimental study on friction and wear behaviours of bearing material under gas lubricated conditions;Jurnal Teknologi,2014

2. Deformation-wear transition map of DLC coating under cyclic impact loading;Wear,2012

3. Phase transformation studies on the a-C coating under repetitive impacts;Surface and Coatings Technology,2010

4. Friction and wear of friction composites reinforced by natural fibres;Materials Science and Engineering Technology,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3