The effect of colemanite on the friction performance of automotive brake friction materials

Author:

Sugozu ilker,mutlu ibrahim,Sugozu Kezban Banu

Abstract

Purpose – The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product colemanite addition and braking characterization investigated for development of non-asbestos organic (NAO) brake lining because of negative effects on human health and environmental hazard of asbestos containing linings. During the braking, brake lining is warmed up extremely due to friction, and the high temperature causes to decreasing of breaking performance. Colemanite has high melting temperature, and this makes this material valuable for brake lining. Design/methodology/approach – This study investigated the effect of colemanite (C) upon friction and wear performance of automotive brake lining. Based on a simple experimental formulation, different amounts of boron product colemanite were used and then evaluated using a friction assessment and screening test. In these specimens, half of the samples (shown with H indices) were heat treated in 4 h at 180°C temperature. Friction coefficient, wear rate and scanning electron microscope for friction surfaces were used to assess the performance of these samples. Findings – The results of test showed that colemanite can substantially improve properties of friction materials. The friction coefficient of friction materials modified with colemanite varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using colemanite. Heat treatment-applied samples (CH) have provided a higher and stable friction coefficient. These results indicate that colemanite has ideal application effect in various friction materials. Originality/value – This paper fulfils an identified information and offers practical help to the industrial firms working with brake lining and also to the academicians working on wear of materials. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3