Together, we travel: empirical insights on human-robot collaborative order picking for retail warehousing

Author:

Koreis Jonas,Loske DominicORCID,Klumpp MatthiasORCID

Abstract

PurposeIncreasing personnel costs and labour shortages have pushed retailers to give increasing attention to their intralogistics operations. We study hybrid order picking systems, in which humans and robots share work time, workspace and objectives and are in permanent contact. This necessitates a collaboration of humans and their mechanical coworkers (cobots).Design/methodology/approachThrough a longitudinal case study on individual-level technology adaption, we accompanied a pilot testing of an industrial truck that automatically follows order pickers in their travel direction. Grounded on empirical field research and a unique large-scale data set comprising N = 2,086,260 storage location visits, where N = 57,239 storage location visits were performed in a hybrid setting and N = 2,029,021 in a manual setting, we applied a multilevel model to estimate the impact of this cobot settings on task performance.FindingsWe show that cobot settings can reduce the time required for picking tasks by as much as 33.57%. Furthermore, practical factors such as product weight, pick density and travel distance mitigate this effect, suggesting that cobots are especially beneficial for short-distance orders.Originality/valueGiven that the literature on hybrid order picking systems has primarily applied simulation approaches, the study is among the first to provide empirical evidence from a real-world setting. The results are discussed from the perspective of Industry 5.0 and can prevent managers from making investment decisions into ineffective robotic technology.

Publisher

Emerald

Subject

Transportation,Business and International Management

Reference65 articles.

1. Robotized and automated warehouse systems: review and recent developments;Transportation Science,2019

2. Dynamic human-robot collaborative picking strategies;Erasmus University Working Paper, available at SSRN 3585396,2020

3. Fitting linear mixed-effects models using lme4;Journal of Statistical Software,2014

4. Finding a needle in a haystack: the effects of searching and learning on pick-worker performance;Management Science,2019

5. A comparative analysis of different paperless picking systems;Industrial Management and Data Systems,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3