1. Anbarasi, M.S.
, Ghaayathri, S.
,
Kamaleswari, R.
and
Abirami, I.
(2011), “Outlier detection for multidimensional medical data”,
International Journal of Computer Science and Information Technologies
, Vol. 2 No. 1, pp. 512-516.
2. Andrew, M.
,
Nigam, K.
and
Ungar, L.H.
(2000),
Efficient Clustering of High-Dimensional Datasets with Application to Reference Matching
, ACM, Boston, MA, pp. 169-178. doi: 1-58113-233-6/00/08.
3. Angiulli, F.
,
Basta, S.
and
Pizzuti, C.
(2006), “Distance based detection and prediction of outliers”,
IEEE, Transactions on Knowledge and Data Engineering
, Vol. 18 No. 2, pp. 145-160.
4. Apurva, M.
and
Honeywell
,
ACS-Labs
(2014), “A medical domain collaborative anomaly detection framework for identifying medical identity theft”, IEEE, Collaboration Technologies and Systems International Conference, pp. 428-435. doi: z10.1109.
5. Barlas, P.
,
Lanning, I.
and
Heavey, C.
(2015), “A survey of open source data science tools”,
International Journal of Intelligent Computing and Cybernetics
, Vol. 8 No. 3, pp. 232-261.