Fatal structure fire classification from building fire data using machine learning

Author:

Balakrishnan VimalaORCID,Mohammed Hashim Aainaa Nadia,Lee Voon Chung,Lee Voon Hee,Lee Ying Qiu

Abstract

PurposeThis study aims to develop a machine learning model to detect structure fire fatalities using a dataset comprising 11,341 cases from 2011 to 2019.Design/methodology/approachExploratory data analysis (EDA) was conducted prior to modelling, in which ten machine learning models were experimented with.FindingsThe main fatal structure fire risk factors were fires originating from bedrooms, living areas and the cooking/dining areas. The highest fatality rate (20.69%) was reported for fires ignited due to bedding (23.43%), despite a low fire incident rate (3.50%). Using 21 structure fire features, Random Forest (RF) yielded the best detection performance with 86% accuracy, followed by Decision Tree (DT) with bagging (accuracy = 84.7%).Research limitations/practical implicationsLimitations of the study are pertaining to data quality and grouping of categories in the data pre-processing stage, which could affect the performance of the models.Originality/valueThe study is the first of its kind to manipulate risk factors to detect fatal structure classification, particularly focussing on structure fire fatalities. Most of the previous studies examined the importance of fire risk factors and their relationship to the fire risk level.

Publisher

Emerald

Subject

General Computer Science

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3