Big data platform for health and safety accident prediction

Author:

Ajayi Anuoluwapo,Oyedele Lukumon,Davila Delgado Juan ManuelORCID,Akanbi Lukman,Bilal Muhammad,Akinade Olugbenga,Olawale Oladimeji

Abstract

Purpose The purpose of this paper is to highlight the use of the big data technologies for health and safety risks analytics in the power infrastructure domain with large data sets of health and safety risks, which are usually sparse and noisy. Design/methodology/approach The study focuses on using the big data frameworks for designing a robust architecture for handling and analysing (exploratory and predictive analytics) accidents in power infrastructure. The designed architecture is based on a well coherent health risk analytics lifecycle. A prototype of the architecture interfaced various technology artefacts was implemented in the Java language to predict the likelihoods of health hazards occurrence. A preliminary evaluation of the proposed architecture was carried out with a subset of an objective data, obtained from a leading UK power infrastructure company offering a broad range of power infrastructure services. Findings The proposed architecture was able to identify relevant variables and improve preliminary prediction accuracies and explanatory capacities. It has also enabled conclusions to be drawn regarding the causes of health risks. The results represent a significant improvement in terms of managing information on construction accidents, particularly in power infrastructure domain. Originality/value This study carries out a comprehensive literature review to advance the health and safety risk management in construction. It also highlights the inability of the conventional technologies in handling unstructured and incomplete data set for real-time analytics processing. The study proposes a technique in big data technology for finding complex patterns and establishing the statistical cohesion of hidden patterns for optimal future decision making.

Publisher

Emerald

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3