Life cycle analysis and sustainability assessment of advanced wastewater treatment technologies

Author:

Kamble Sheetal Jaisingh,Singh Anju,Kharat Manoj Govind

Abstract

Purpose Wastewater treatment plants (WWTPs) have long-time environmental impacts. The purpose of this paper is to assess the environmental footprint of two advanced wastewater treatment (WWT) technologies in a life cycle and sustainability perspective and identify the improvement alternatives. Design/methodology/approach In this study life cycle-based environmental assessment of two advanced WWT technologies (moving bed biofilm reactor (MBBR) and sequencing batch reactor (SBR)) has been carried out to compare different technological options. Life cycle impacts were computed using GaBi software employing the CML 2 (2010) methodology. Primary data were collected and analysed through surveys and on-site visits to WWTPs. The present study attempts to achieve significantly transparent results using life cycle assessment (LCA) in limited availability of data. Findings The results of both direct measurements in the studied wastewater systems and the LCA support the fact that advanced treatment has the best environmental performance. The results show that the operation phase contributes to nearly 99 per cent for the impacts of the plant. The study identified emissions associated with electricity production required to operate the WWTPs, chemical usage, emissions to water from treated effluent and heavy metal emissions from waste sludge applied to land are the major contributors for overall environmental impacts. SBR is found to be the best option for WWT as compared to MBBR in the urban context. In order to improve the overall environmental performance, the wastewater recovery, that is, reusable water should be improved. Further, sludge utilisation for energy recovery should be considered. The results of the study show that the avoided impacts of energy recovery can be even greater than direct impacts of greenhouse gas emissions from the wastewater system. Therefore, measures which combine reusing wastewater with energy generation should be preferred. The study highlights the major shortcoming, i.e., the lack of national life cycle inventories and databases in India limiting the wide application of LCA in the context of environmental decision making. Research limitations/implications The results of this study express only the environmental impacts of the operation phase of WWT system and sludge management options. Therefore, it is recommended that further LCAs studies should be carried out to investigate construction and demolition phase and also there is need to reconsider the toxicological- and pathogen-related impact categories. The results obtained through this type of LCA studies can be used in the decision-making framework for selection of appropriate WWT technology by considering LCA results as one of the attributes. Practical implications The results of LCA modelling show that though the environmental impacts associated with advanced technologies are high, these technologies produce the good reusable quality of effluent. In areas where water is scarce, governments should promote reusing wastewater by providing additional treatment under safe conditions as much as possible with advanced WWT. The LCA model for WWT and management planning can be used for the environmental assessment of WWT technologies. Originality/value The current work provides a site-specific data on sustainable WWT and management. The study contributes to the development of the regional reference input data for LCA (inventory development) in the domain of wastewater management.

Publisher

Emerald

Reference69 articles.

1. PPCPs in wastewater – update and calculation of characterization factors for their inclusion in LCA studies;Journal of Cleaner Production,2014

2. Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach;Journal of Cleaner Production,2013

3. Using site-specific life cycle assessment methodology to evaluate Chinese wastewater treatment scenarios: a comparative study of site-generic and site-specific methods;Journal of Cleaner Production,2017

4. Midpoints versus endpoints: the sacrifices and benefits;The International Journal of Life Cycle Assessment,2000

5. Sustainability analysis of different SWRO pre-treatment alternatives;Desalination and Water Treatment,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3