Author:
Kumarasamy Vanchinathan,Ramasamy Valluvan KarumanchettyThottam,Chinnaraj Gnanavel
Abstract
Purpose
The puspose of this paper, a novel systematic design of fractional order proportional integral derivative (FOPID) controller-based speed control of sensorless brushless DC (BLDC) motor using multi-objective enhanced genetic algorithm (EGA). This scheme provides an excellent dynamic and static response, low computational burden, the robust speed control.
Design/methodology/approach
The EGA is a meta-heuristic-inspired algorithm for solving non-linearity problems such as sudden load disturbances, modeling errors, power fluctuations, poor stability, the maximum time of transient processes, static and dynamic errors. The conventional genetic algorithm (CGA) and modified genetic algorithm (MGA) are not very effective in solving the above-mentioned problems. Hence, a multi-objective EGA optimized FOPID (EGA-FOPID) controller is proposed for speed control of sensorless BLDC motor under various conditions such as constant load conditions, varying load conditions, varying set speed (Ns) conditions, integrated conditions and controller parameters uncertainty.
Findings
This systematic design of the multi-objective EGA-FOPID controller is implemented in MATLAB 2020a with Simulink models for optimal speed control of the BLDC motor. The overall performance of the EGA-FOPID controller is observed and evaluated for computational burden, time integral performance indexes, transient and steady-state characteristics. The hardware experiment results confirm that the proposed EGA-FOPID controller can precisely change the BLDC motor speed is desired range with minimal effort.
Research limitations/implications
The conventional real time issues such as nonlinearity characteristics, poor controllability and stability.
Practical implications
It is clearly evident that out of these three intelligent controllers, the EGA optimized FOPID controller gives enhanced performance by minimizing the time domain parameters, performance Indices error and convergence time. Also, the hardware experimental setup and the results of the proposed EGA-FOPID controller are presented.
Originality/value
It shows the effectiveness of the proposed controllers is completely verified by comparing the above three intelligent optimization algorithms. It is clearly evident that out of these three intelligent controllers, the EGA optimized FOPID controller gives enhanced performance by minimizing the time domain parameters, performance Indices error and convergence time. Also, the hardware experimental setup and the results of the proposed EGA-FOPID controller are presented.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献