“Less is more”

Author:

Zhang ZiqiORCID,Bors Georgica

Abstract

Purpose This work studies automated user classification on Twitter in the public health domain, a task that is essential to many public health-related research works on social media but has not been addressed. The purpose of this paper is to obtain empirical knowledge on how to optimise the classifier performance on this task. Design/methodology/approach A sample of 3,100 Twitter users who tweeted about different health conditions were manually coded into six most common stakeholders. The authors propose new, simple features extracted from the short Twitter profiles of these users, and compare a large set of classification models (including state-of-the-art) that use more complex features and with different algorithms on this data set. Findings The authors show that user classification in the public health domain is a very challenging task, as the best result the authors can obtain on this data set is only 59 per cent in terms of F1 score. Compared to state-of-the-art, the methods can obtain significantly better (10 percentage points in F1 on a “best-against-best” basis) results when using only a small set of 40 features extracted from the short Twitter user profile texts. Originality/value The work is the first to study the different types of users that engage in health-related communication on social media, applicable to a broad range of health conditions rather than specific ones studied in the previous work. The methods are implemented as open source tools, and together with data, are the first of this kind. The authors believe these will encourage future research to further improve this important task.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference39 articles.

1. A new model for classifying social media users according to their behaviors,2015

2. Activity, content, contributors, and influencers of the twitter discussion on urologic oncology;Urologic Oncology: Seminars and Original Investigations,2016

3. #colorectalsurgery;British Journal of Surgery,2017

4. Detecting automation of Twitter accounts: are you a human, bot, or cyborg?;IEEE Transactions on Dependable and Secure Computing,2012

5. Classifying political orientation on Twitter: it’s not easy!,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3