Author:
Umer Rahila,Susnjak Teo,Mathrani Anuradha,Suriadi Suriadi
Abstract
Purpose
The purpose of this paper is to propose a process mining approach to help in making early predictions to improve students’ learning experience in massive open online courses (MOOCs). It investigates the impact of various machine learning techniques in combination with process mining features to measure effectiveness of these techniques.
Design/methodology/approach
Student’s data (e.g. assessment grades, demographic information) and weekly interaction data based on event logs (e.g. video lecture interaction, solution submission time, time spent weekly) have guided this design. This study evaluates four machine learning classification techniques used in the literature (logistic regression (LR), Naïve Bayes (NB), random forest (RF) and K-nearest neighbor) to monitor weekly progression of students’ performance and to predict their overall performance outcome. Two data sets – one, with traditional features and second, with features obtained from process conformance testing – have been used.
Findings
The results show that techniques used in the study are able to make predictions on the performance of students. Overall accuracy (F1-score, area under curve) of machine learning techniques can be improved by integrating process mining features with standard features. Specifically, the use of LR and NB classifiers outperforms other techniques in a statistical significant way.
Practical implications
Although MOOCs provide a platform for learning in highly scalable and flexible manner, they are prone to early dropout and low completion rate. This study outlines a data-driven approach to improve students’ learning experience and decrease the dropout rate.
Social implications
Early predictions based on individual’s participation can help educators provide support to students who are struggling in the course.
Originality/value
This study outlines the innovative use of process mining techniques in education data mining to help educators gather data-driven insight on student performances in the enrolled courses.
Reference42 articles.
1. The prediction of students’ academic performance using classification data mining techniques;Applied Mathematical Sciences,2015
2. Predicting drop-out from social behaviour of students,2012
3. An essay towards solving a problem in the doctrine of chances. La Reconnaissance Automatique De La Parole;Rev. Laryngol. Otol. Rhinol.,1990
4. Methodological challenges in the analysis of MOOC data for exploring the relationship between discussion forum views and learning outcomes,2015
5. Improved student dropout prediction in Thai University using ensemble of mixed-type data clusterings;International Journal of Machine Learning and Cybernetics,2017
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献