Educational data mining: a systematic review of research and emerging trends

Author:

Du Xu,Yang Juan,Hung Jui-Long,Shelton Brett

Abstract

Purpose Educational data mining (EDM) and learning analytics, which are highly related subjects but have different definitions and focuses, have enabled instructors to obtain a holistic view of student progress and trigger corresponding decision-making. Furthermore, the automation part of EDM is closer to the concept of artificial intelligence. Due to the wide applications of artificial intelligence in assorted fields, the authors are curious about the state-of-art of related applications in Education. Design/methodology/approach This study focused on systematically reviewing 1,219 EDM studies that were searched from five digital databases based on a strict search procedure. Although 33 reviews were attempted to synthesize research literature, several research gaps were identified. A comprehensive and systematic review report is needed to show us: what research trends can be revealed and what major research topics and open issues are existed in EDM research. Findings Results show that the EDM research has moved toward the early majority stage; EDM publications are mainly contributed by “actual analysis” category; machine learning or even deep learning algorithms have been widely adopted, but collecting actual larger data sets for EDM research is rare, especially in K-12. Four major research topics, including prediction of performance, decision support for teachers and learners, detection of behaviors and learner modeling and comparison or optimization of algorithms, have been identified. Some open issues and future research directions in EDM field are also put forward. Research limitations/implications Limitations for this search method include the likelihood of missing EDM research that was not captured through these portals. Originality/value This systematic review has not only reported the research trends of EDM but also discussed open issues to direct future research. Finally, it is concluded that the state-of-art of EDM research is far from the ideal of artificial intelligence and the automatic support part for teaching and learning in EDM may need improvement in the future work.

Publisher

Emerald

Subject

Library and Information Sciences,General Computer Science

Reference78 articles.

1. Mining login data for actionable student insight,2015

2. Analysis of factors affecting enrollment pattern in Indian universities using k-means clustering,2016

3. Improving stealth assessment in game-based learning with LSTM-based analytics,2018

4. Data mining in education;International Journal of Advanced Computer Science & Applications,2016

5. Machine learning approaches to predict learning outcomes in massive open online courses,2017

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preparing Teachers and Students for the Challenges of Society 5.0;Advances in Educational Technologies and Instructional Design;2024-06-28

2. A critical review of data mining in education on the levels and aspects of education;Quality Education for All;2024-06-24

3. Student performance prediction employing k-Nearest Neighbor Classification model and meta-heuristic algorithms;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-06-06

4. The power of Deep Learning techniques for predicting student performance in Virtual Learning Environments: A systematic literature review;Computers and Education: Artificial Intelligence;2024-06

5. A review of machine learning methods used for educational data;Education and Information Technologies;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3