Predicting stock market using natural language processing

Author:

Puh Karlo,Bagić Babac MarinaORCID

Abstract

PurposePredicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP) have opened new perspectives for solving this task. The purpose of this paper is to show a state-of-the-art natural language approach to using language in predicting the stock market.Design/methodology/approachIn this paper, the conventional statistical models for time-series prediction are implemented as a benchmark. Then, for methodological comparison, various state-of-the-art natural language models ranging from the baseline convolutional and recurrent neural network models to the most advanced transformer-based models are developed, implemented and tested.FindingsExperimental results show that there is a correlation between the textual information in the news headlines and stock price prediction. The model based on the GRU (gated recurrent unit) cell with one linear layer, which takes pairs of the historical prices and the sentiment score calculated using transformer-based models, achieved the best result.Originality/valueThis study provides an insight into how to use NLP to improve stock price prediction and shows that there is a correlation between news headlines and stock price prediction.

Publisher

Emerald

Subject

General Medicine

Reference45 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network-Based Predictive Models for Stock Market Index Forecasting;Journal of Risk and Financial Management;2024-06-11

2. Smart Tool for Streamlining Mutual Fund Insights through Efficient Data Analysis from Financial News;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

3. Developing a data pipeline solution for big data processing;International Journal of Data Mining, Modelling and Management;2024

4. Effective Spam Detection with Machine Learning;Croatian Regional Development Journal;2023-12-01

5. Preventing Security Incidents on Social Networks;Policija i sigurnost;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3