Author:
Hassani Meisam,Safi Mohammad,Rasti Ardakani Reza,Saedi Daryan Amir
Abstract
Purpose
This paper aims to predict the fire resistance of steel-reinforced concrete columns by application of the genetic algorithm.
Design/methodology/approach
In total, 11 effective parameters are considered including mechanical and geometrical properties of columns and loading values as input parameters and the duration of concrete resistance at elevated temperatures as the output parameter. Then, experimental data of several studies – with extensive ranges – are collected and divided into two categories.
Findings
Using the first set of the data along with the gene expression programming (GEP), the fire resistance predictive model of steel-reinforced concrete (SRC) composite columns is presented. By application of the second category, evaluation and validation of the proposed model are investigated as well, and the correspondent time-temperature diagrams are derived.
Originality/value
The relative error of 10% and the R coefficient of 0.9 for the predicted model are among the highlighted results of this validation. Based on the statistical errors, a fair agreement exists between the experimental data and predicted values, indicating the appropriate performance of the proposed GEP model for fire resistance prediction of SRC columns.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献