Investigating the fire performance of LSF wall systems using finite element analyses

Author:

Rusthi Mohamed,Keerthan Poologanathan,Mahendran Mahen,Ariyanayagam Anthony

Abstract

Purpose This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations. Design/methodology/approach This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations. Findings The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios. Originality/value Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3